Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Reducing the Amount of Real World Data for Object Detector Training with Synthetic Data (2202.00632v1)

Published 31 Jan 2022 in cs.CV

Abstract: A number of studies have investigated the training of neural networks with synthetic data for applications in the real world. The aim of this study is to quantify how much real world data can be saved when using a mixed dataset of synthetic and real world data. By modeling the relationship between the number of training examples and detection performance by a simple power law, we find that the need for real world data can be reduced by up to 70% without sacrificing detection performance. The training of object detection networks is especially enhanced by enriching the mixed dataset with classes underrepresented in the real world dataset. The results indicate that mixed datasets with real world data ratios between 5% and 20% reduce the need for real world data the most without reducing the detection performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.