Papers
Topics
Authors
Recent
Search
2000 character limit reached

Natural Language to Code Using Transformers

Published 1 Feb 2022 in cs.CL and cs.LG | (2202.00367v1)

Abstract: We tackle the problem of generating code snippets from natural language descriptions using the CoNaLa dataset. We use the self-attention based transformer architecture and show that it performs better than recurrent attention-based encoder decoder. Furthermore, we develop a modified form of back translation and use cycle consistent losses to train the model in an end-to-end fashion. We achieve a BLEU score of 16.99 beating the previously reported baseline of the CoNaLa challenge.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.