Papers
Topics
Authors
Recent
2000 character limit reached

Learning Curves for Decision Making in Supervised Machine Learning: A Survey

Published 28 Jan 2022 in cs.LG | (2201.12150v2)

Abstract: Learning curves are a concept from social sciences that has been adopted in the context of machine learning to assess the performance of a learning algorithm with respect to a certain resource, e.g., the number of training examples or the number of training iterations. Learning curves have important applications in several machine learning contexts, most notably in data acquisition, early stopping of model training, and model selection. For instance, learning curves can be used to model the performance of the combination of an algorithm and its hyperparameter configuration, providing insights into their potential suitability at an early stage and often expediting the algorithm selection process. Various learning curve models have been proposed to use learning curves for decision making. Some of these models answer the binary decision question of whether a given algorithm at a certain budget will outperform a certain reference performance, whereas more complex models predict the entire learning curve of an algorithm. We contribute a framework that categorises learning curve approaches using three criteria: the decision-making situation they address, the intrinsic learning curve question they answer and the type of resources they use. We survey papers from the literature and classify them into this framework.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.