Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks

Published 28 Jan 2022 in cs.LG and math.OC | (2201.12052v2)

Abstract: We study the overparametrization bounds required for the global convergence of stochastic gradient descent algorithm for a class of one hidden layer feed-forward neural networks, considering most of the activation functions used in practice, including ReLU. We improve the existing state-of-the-art results in terms of the required hidden layer width. We introduce a new proof technique combining nonlinear analysis with properties of random initializations of the network. First, we establish the global convergence of continuous solutions of the differential inclusion being a nonsmooth analogue of the gradient flow for the MSE loss. Second, we provide a technical result (working also for general approximators) relating solutions of the aforementioned differential inclusion to the (discrete) stochastic gradient descent sequences, hence establishing linear convergence towards zero loss for the stochastic gradient descent iterations.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.