Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multimodal neural networks better explain multivoxel patterns in the hippocampus (2201.11517v1)

Published 11 Dec 2021 in q-bio.NC, cs.LG, and cs.NE

Abstract: The human hippocampus possesses "concept cells", neurons that fire when presented with stimuli belonging to a specific concept, regardless of the modality. Recently, similar concept cells were discovered in a multimodal network called CLIP (Radford et at., 2021). Here, we ask whether CLIP can explain the fMRI activity of the human hippocampus better than a purely visual (or linguistic) model. We extend our analysis to a range of publicly available uni- and multi-modal models. We demonstrate that "multimodality" stands out as a key component when assessing the ability of a network to explain the multivoxel activity in the hippocampus.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.