Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ontology-enhanced Prompt-tuning for Few-shot Learning (2201.11332v1)

Published 27 Jan 2022 in cs.CL, cs.AI, cs.IR, and cs.LG

Abstract: Few-shot Learning (FSL) is aimed to make predictions based on a limited number of samples. Structured data such as knowledge graphs and ontology libraries has been leveraged to benefit the few-shot setting in various tasks. However, the priors adopted by the existing methods suffer from challenging knowledge missing, knowledge noise, and knowledge heterogeneity, which hinder the performance for few-shot learning. In this study, we explore knowledge injection for FSL with pre-trained LLMs and propose ontology-enhanced prompt-tuning (OntoPrompt). Specifically, we develop the ontology transformation based on the external knowledge graph to address the knowledge missing issue, which fulfills and converts structure knowledge to text. We further introduce span-sensitive knowledge injection via a visible matrix to select informative knowledge to handle the knowledge noise issue. To bridge the gap between knowledge and text, we propose a collective training algorithm to optimize representations jointly. We evaluate our proposed OntoPrompt in three tasks, including relation extraction, event extraction, and knowledge graph completion, with eight datasets. Experimental results demonstrate that our approach can obtain better few-shot performance than baselines.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.