DiGamma: Domain-aware Genetic Algorithm for HW-Mapping Co-optimization for DNN Accelerators (2201.11220v1)
Abstract: The design of DNN accelerators includes two key parts: HW resource configuration and mapping strategy. Intensive research has been conducted to optimize each of them independently. Unfortunately, optimizing for both together is extremely challenging due to the extremely large cross-coupled search space. To address this, in this paper, we propose a HW-Mapping co-optimization framework, an efficient encoding of the immense design space constructed by HW and Mapping, and a domain-aware genetic algorithm, named DiGamma, with specialized operators for improving search efficiency. We evaluate DiGamma with seven popular DNNs models with different properties. Our evaluations show DiGamma can achieve (geomean) 3.0x and 10.0x speedup, comparing to the best-performing baseline optimization algorithms, in edge and cloud settings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.