2000 character limit reached
Confidence Intervals for the Generalisation Error of Random Forests (2201.11210v1)
Published 26 Jan 2022 in stat.ME
Abstract: Out-of-bag error is commonly used as an estimate of generalisation error in ensemble-based learning models such as random forests. We present confidence intervals for this quantity using the delta-method-after-bootstrap and the jackknife-after-bootstrap techniques. These methods do not require growing any additional trees. We show that these new confidence intervals have improved coverage properties over the naive confidence interval, in real and simulated examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.