Papers
Topics
Authors
Recent
2000 character limit reached

Relaxed Notions of Condorcet-Consistency and Efficiency for Strategyproof Social Decision Schemes

Published 25 Jan 2022 in econ.TH | (2201.10418v1)

Abstract: Social decision schemes (SDSs) map the preferences of a group of voters over some set of $m$ alternatives to a probability distribution over the alternatives. A seminal characterization of strategyproof SDSs by Gibbard implies that there are no strategyproof Condorcet extensions and that only random dictatorships satisfy ex post efficiency and strategyproofness. The latter is known as the random dictatorship theorem. We relax Condorcet-consistency and ex post efficiency by introducing a lower bound on the probability of Condorcet winners and an upper bound on the probability of Pareto-dominated alternatives, respectively. We then show that the SDS that assigns probabilities proportional to Copeland scores is the only anonymous, neutral, and strategyproof SDS that can guarantee the Condorcet winner a probability of at least 2/m. Moreover, no strategyproof SDS can exceed this bound, even when dropping anonymity and neutrality. Secondly, we prove a continuous strengthening of Gibbard's random dictatorship theorem: the less probability we put on Pareto-dominated alternatives, the closer to a random dictatorship is the resulting SDS. Finally, we show that the only anonymous, neutral, and strategyproof SDSs that maximize the probability of Condorcet winners while minimizing the probability of Pareto-dominated alternatives are mixtures of the uniform random dictatorship and the randomized Copeland rule.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.