A coupled-mode theory for two-dimensional exterior Helmholtz problems based on the Neumann and Dirichlet normal mode expansion (2201.09502v1)
Abstract: This study proposes a novel coupled-mode theory for two-dimensional exterior Helmholtz problems. The proposed approach is based on the separation of the entire space R2 into a fictitious disk and its exterior. The disk is allocated in such a way that it comprises all the inhomogeneity; therefore, the exterior supports cylindrical waves with a continuous spectrum. For the interior, we expand an unknown wave field using normal modes that satisfy some auxiliary boundary conditions on the surface of the disk. For the interior expansion, we propose combining the Neumann and Dirichlet normal modes. We show that the proposed expansion sacrifices L2 orthogonality but significantly improve the convergence. Finally, we present some numerical verifications of the proposed coupled-mode theory.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.