Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite elements for Helmholtz equations with a nonlocal boundary condition (2009.08493v2)

Published 17 Sep 2020 in math.NA and cs.NA

Abstract: Numerical resolution of exterior Helmholtz problems requires some approach to domain truncation. As an alternative to approximate nonreflecting boundary conditions and invocation of the Dirichlet-to-Neumann map, we introduce a new, nonlocal boundary condition. This condition is exact and requires the evaluation of layer potentials involving the free space Green's function. However, it seems to work in general unstructured geometry, and Galerkin finite element discretization leads to convergence under the usual mesh constraints imposed by G{\aa}rding-type inequalities. The nonlocal boundary conditions are readily approximated by fast multipole methods, and the resulting linear system can be preconditioned by the purely local operator involving transmission boundary conditions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.