Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive DropBlock Enhanced Generative Adversarial Networks for Hyperspectral Image Classification (2201.08938v1)

Published 22 Jan 2022 in cs.CV and eess.IV

Abstract: In recent years, hyperspectral image (HSI) classification based on generative adversarial networks (GAN) has achieved great progress. GAN-based classification methods can mitigate the limited training sample dilemma to some extent. However, several studies have pointed out that existing GAN-based HSI classification methods are heavily affected by the imbalanced training data problem. The discriminator in GAN always contradicts itself and tries to associate fake labels to the minority-class samples, and thus impair the classification performance. Another critical issue is the mode collapse in GAN-based methods. The generator is only capable of producing samples within a narrow scope of the data space, which severely hinders the advancement of GAN-based HSI classification methods. In this paper, we proposed an Adaptive DropBlock-enhanced Generative Adversarial Networks (ADGAN) for HSI classification. First, to solve the imbalanced training data problem, we adjust the discriminator to be a single classifier, and it will not contradict itself. Second, an adaptive DropBlock (AdapDrop) is proposed as a regularization method employed in the generator and discriminator to alleviate the mode collapse issue. The AdapDrop generated drop masks with adaptive shapes instead of a fixed size region, and it alleviates the limitations of DropBlock in dealing with ground objects with various shapes. Experimental results on three HSI datasets demonstrated that the proposed ADGAN achieved superior performance over state-of-the-art GAN-based methods. Our codes are available at https://github.com/summitgao/HC_ADGAN

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Junjie Wang (164 papers)
  2. Feng Gao (240 papers)
  3. Junyu Dong (116 papers)
  4. Qian Du (50 papers)
Citations (64)

Summary

We haven't generated a summary for this paper yet.