Papers
Topics
Authors
Recent
2000 character limit reached

Quantized Fractional Thouless Pumping of Solitons

Published 20 Jan 2022 in physics.optics and nlin.PS | (2201.08258v1)

Abstract: In many contexts, the interaction between particles gives rise to emergent and perhaps unanticipated physical phenomena. An example is the fractional quantum Hall effect, where interaction between electrons gives rise to fractionally quantized Hall conductance. In photonic systems, the nonlinear response of an ambient medium acts to mediate interaction between photons; in the mean-field limit these dynamics are described by the nonlinear Schr\"odinger (also called Gross-Pitaevskii) equation. Recently, it was shown that at weak nonlinearity, soliton motion in nonlinear Thouless pumps (a dimensionally reduced implementation of a Chern insulator) could be quantized to the Chern number of the band from which the soliton bifurcates. Here, we show theoretically and experimentally using arrays of coupled optical waveguides that sufficiently strong nonlinearity acts to fractionally quantize the motion of solitons. Specifically, we find that the soliton returns to itself after multiple cycles of the Thouless pump - but displaced by an integer number of unit cells - leading to a rich fractional plateaux structure describing soliton motion. Our results demonstrate a perhaps surprising example of the behavior of non-trivial topological systems in the presence of interactions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.