Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asymptotic properties of Bayesian inference in linear regression with a structural break

Published 18 Jan 2022 in econ.EM, math.ST, and stat.TH | (2201.07319v1)

Abstract: This paper studies large sample properties of a Bayesian approach to inference about slope parameters $\gamma$ in linear regression models with a structural break. In contrast to the conventional approach to inference about $\gamma$ that does not take into account the uncertainty of the unknown break location $\tau$, the Bayesian approach that we consider incorporates such uncertainty. Our main theoretical contribution is a Bernstein-von Mises type theorem (Bayesian asymptotic normality) for $\gamma$ under a wide class of priors, which essentially indicates an asymptotic equivalence between the conventional frequentist and Bayesian inference. Consequently, a frequentist researcher could look at credible intervals of $\gamma$ to check robustness with respect to the uncertainty of $\tau$. Simulation studies show that the conventional confidence intervals of $\gamma$ tend to undercover in finite samples whereas the credible intervals offer more reasonable coverages in general. As the sample size increases, the two methods coincide, as predicted from our theoretical conclusion. Using data from Paye and Timmermann (2006) on stock return prediction, we illustrate that the traditional confidence intervals on $\gamma$ might underrepresent the true sampling uncertainty.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.