Papers
Topics
Authors
Recent
2000 character limit reached

Embedded Trefftz discontinuous Galerkin methods

Published 18 Jan 2022 in math.NA and cs.NA | (2201.07041v2)

Abstract: In Trefftz discontinuous Galerkin methods a partial differential equation is discretized using discontinuous shape functions that are chosen to be elementwise in the kernel of the corresponding differential operator. We propose a new variant, the embedded Trefftz discontinuous Galerkin method, which is the Galerkin projection of an underlying discontinuous Galerkin method onto a subspace of Trefftz-type. The subspace can be described in a very general way and to obtain it no Trefftz functions have to be calculated explicitly, instead the corresponding embedding operator is constructed. In the simplest cases the method recovers established Trefftz discontinuous Galerkin methods. But the approach allows to conveniently extend to general cases, including inhomogeneous sources and non-constant coefficient differential operators. We introduce the method, discuss implementational aspects and explore its potential on a set of standard PDE problems. Compared to standard discontinuous Galerkin methods we observe a severe reduction of the globally coupled unknowns in all considered cases, reducing the corresponding computing time significantly. Moreover, for the Helmholtz problem we even observe an improved accuracy similar to Trefftz discontinuous Galerkin methods based on plane waves.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.