A space-time Trefftz discontinuous Galerkin method for the linear Schrödinger equation
Abstract: A space-time Trefftz discontinuous Galerkin method for the Schr\"odinger equation with piecewise-constant potential is proposed and analyzed. Following the spirit of Trefftz methods, trial and test spaces are spanned by non-polynomial complex wave functions that satisfy the Schro\"odinger equation locally on each element of the space-time mesh. This allows for a significant reduction in the number of degrees of freedom in comparison with full polynomial spaces. We prove well-posedness and stability of the method, and, for the one- and two- dimensional cases, optimal, high-order, h-convergence error estimates in a skeleton norm. Some numerical experiments validate the theoretical results presented.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.