Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distortion-Aware Brushing for Reliable Cluster Analysis in Multidimensional Projections (2201.06379v2)

Published 17 Jan 2022 in cs.HC and cs.LG

Abstract: Brushing is a common interaction technique in 2D scatterplots, allowing users to select clustered points within a continuous, enclosed region for further analysis or filtering. However, applying conventional brushing to 2D representations of multidimensional (MD) data, i.e., Multidimensional Projections (MDPs), can lead to unreliable cluster analysis due to MDP-induced distortions that inaccurately represent the cluster structure of the original MD data. To alleviate this problem, we introduce a novel brushing technique for MDPs called Distortion-aware brushing. As users perform brushing, Distortion-aware brushing corrects distortions around the currently brushed points by dynamically relocating points in the projection, pulling data points close to the brushed points in MD space while pushing distant ones apart. This dynamic adjustment helps users brush MD clusters more accurately, leading to more reliable cluster analysis. Our user studies with 24 participants show that Distortion-aware brushing significantly outperforms previous brushing techniques for MDPs in accurately separating clusters in the MD space and remains robust against distortions. We further demonstrate the effectiveness of our technique through two use cases: (1) conducting cluster analysis of geospatial data and (2) interactively labeling MD clusters.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.