Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Visual Highlighting for Situated Brushing and Linking (2403.15321v3)

Published 22 Mar 2024 in cs.HC

Abstract: Brushing and linking is widely used for visual analytics in desktop environments. However, using this approach to link many data items between situated (e.g., a virtual screen with data) and embedded views (e.g., highlighted objects in the physical environment) is largely unexplored. To this end, we study the effectiveness of visual highlighting techniques in helping users identify and link physical referents to brushed data marks in a situated scatterplot. In an exploratory virtual reality user study (N=20), we evaluated four highlighting techniques under different physical layouts and tasks. We discuss the effectiveness of these techniques, as well as implications for the design of brushing and linking operations in situated analytics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (88)
  1. American Psychological Association (Washington, District of Columbia) (Ed.): Publication Manual of the American Psychological Association, seventh edition ed. 2020.
  2. Handling Non-Visible Referents in Situated Visualizations. IEEE Trans. Visual Comput. Graphics 30, 1 (Jan. 2024), 1336–1346. doi:10.1109/TVCG.2023.3327361.
  3. Supporting Healthy Grocery Shopping via Mobile Augmented Reality. ACM Transactions on Multimedia Computing, Communications, and Applications 12, 1s (2015), 16:1–16:24. doi:10.1145/2808207.
  4. What’s the Situation with Situated Visualization? A Survey and Perspectives on Situatedness. IEEE Trans. Visual Comput. Graphics 28, 1 (2022), 107–117. doi:10.1109/TVCG.2021.3114835.
  5. Information-rich virtual environments: Theory, tools, and research agenda. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (New York, 2003), VRST ’03, ACM, p. 81–90. doi:10.1145/1008653.1008669.
  6. Augmented Reality Training for Industrial Assembly Work - Are Projection-based AR Assistive Systems an Appropriate Tool for Assembly Training? In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (New York, 2020), ACM, pp. 1–12. doi:10.1145/3313831.3376720.
  7. Baudisch P., Rosenholtz R.: Halo: A technique for visualizing off-screen objects. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2003), p. 481–488. doi:10.1145/642611.642695.
  8. Towards efficient visual guidance in limited field-of-view head-mounted displays. IEEE Trans. Visual Comput. Graphics 24, 11 (2018), 2983–2992. doi:10.1109/TVCG.2018.2868584.
  9. Attention funnel: Omnidirectional 3d cursor for mobile augmented reality platforms. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2006), p. 1115–1122. doi:10.1145/1124772.1124939.
  10. Collins C., Carpendale S.: VisLink: Revealing Relationships Amongst Visualizations. IEEE Trans. Visual Comput. Graphics 13, 6 (2007), 1192–1199. doi:10.1109/TVCG.2007.70521.
  11. ImAxes: Immersive Axes as Embodied Affordances for Interactive Multivariate Data Visualisation. In Proceedings User Interface Software and Technology (New York, 2017), ACM, pp. 71–83. doi:10.1145/3126594.3126613.
  12. Exploring Augmented Reality for Situated Analytics with Many Movable Physical Referents. In Proceedings of the 29th ACM Symposium on Virtual Reality Software and Technology (New York, 2023), VRST ’23, ACM, pp. 1–12. doi:10.1145/3611659.3615700.
  13. A review of overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv. 41, 1 (jan 2009). doi:10.1145/1456650.1456652.
  14. Cumming G.: The new statistics: Why and how. Psychological Science 25, 1 (2014), 7–29. PMID: 24220629. doi:10.1177/0956797613504966.
  15. Bees, birds and butterflies: Investigating the influence of distractors on visual attention guidance techniques. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (New York, 2023), ACM. doi:10.1145/3544549.3585816.
  16. Doerr N., Lee B.: Vishigh, 2024. URL: https://github.com/doerrna/VisHigh.
  17. A visual interaction cue framework from video game environments for augmented reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (New York, 2018), CHI ’18, ACM, p. 1–12. URL: https://doi.org/10.1145/3173574.3173714, doi:10.1145/3173574.3173714.
  18. Grand challenges in immersive analytics. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (2021). doi:10.1145/3411764.3446866.
  19. HORUS EYE: See the Invisible Bird and Snake Vision for Augmented Reality Information Visualization. In 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) (2016), IEEE, pp. 203–208. doi:10.1109/ISMAR-Adjunct.2016.0077.
  20. Situated Analytics. In 2015 Big Data Visual Analytics (BDVA) (USA, 2015), IEEE, pp. 1–8. doi:10.1109/BDVA.2015.7314302.
  21. Situated Analytics: Demonstrating immersive analytical tools with Augmented Reality. J. Vis. Lang. Comput. 36, C (2016), 13–23. doi:10.1016/j.jvlc.2016.07.006.
  22. Knowledge-based augmented reality. Commun. ACM 36, 7 (jul 1993), 53–62. doi:10.1145/159544.159587.
  23. Fonnet A., Prié Y.: Survey of Immersive Analytics. IEEE Trans. Visual Comput. Graphics 27, 3 (Mar. 2021), 2101–2122. doi:10.1109/TVCG.2019.2929033.
  24. Gaze guidance in immersive environments. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (2018), pp. 563–564. doi:10.1109/VR.2018.8446215.
  25. Peripheral Popout: The Influence of Visual Angle and Stimulus Intensity on Popout Effects. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (New York, 2017), CHI ’17, ACM, pp. 208–219. doi:10.1145/3025453.3025984.
  26. Design and simulation of next-generation augmented reality user interfaces in virtual reality. In 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (2021), pp. 23–29. doi:10.1109/VRW52623.2021.00011.
  27. Domino: Extracting, Comparing, and Manipulating Subsets Across Multiple Tabular Datasets. IEEE Trans. Visual Comput. Graphics 20, 12 (2014), 2023–2032. doi:10.1109/TVCG.2014.2346260.
  28. FlyingARrow: Pointing Towards Out-of-View Objects on Augmented Reality Devices. In Proceedings of the 7th ACM International Symposium on Pervasive Displays (New York, 2018), PerDis ’18, ACM, pp. 1–6. doi:10.1145/3205873.3205881.
  29. Show me the invisible: Visualizing hidden content. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (New York, 2014), CHI ’14, ACM, pp. 3705–3714. doi:10.1145/2556288.2557032.
  30. Hart S. G.: Nasa-task load index (nasa-tlx); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (2006), 904–908. doi:10.1177/154193120605000909.
  31. Heer J., Robertson G.: Animated Transitions in Statistical Data Graphics. IEEE Trans. Visual Comput. Graphics 13, 6 (Nov. 2007), 1240–1247. doi:10.1109/TVCG.2007.70539.
  32. Fiberclay: Sculpting three dimensional trajectories to reveal structural insights. IEEE Trans. Visual Comput. Graphics 25 (1 2019), 704–714. doi:10.1109/TVCG.2018.2865191.
  33. Aroundplot: Focus+context interface for off-screen objects in 3d environments. Computers & Graphics 35, 4 (2011), 841–853. Semantic 3D Media and Content. doi:10.1016/j.cag.2011.04.005.
  34. Information filtering for mobile augmented reality. In Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000) (2000), pp. 3–11. doi:10.1109/ISAR.2000.880917.
  35. Deadeye visualization revisited: Investigation of preattentiveness and applicability in virtual environments. IEEE Trans. Visual Comput. Graphics 26, 1 (2020), 547–557. doi:10.1109/TVCG.2019.2934370.
  36. Keim D. A.: Information visualization and visual data mining. IEEE Trans. Visual Comput. Graphics 8, 1 (2002), 1–8. doi:10.1109/2945.981847.
  37. Immersive analytics with abstract 3d visualizations: A survey. Computer Graphics Forum 41, 1 (2022), 201–229. doi:https://doi.org/10.1111/cgf.14430.
  38. Analysing the effects of a wide field of view augmented reality display on search performance in divided attention tasks. In 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2014), pp. 177–186. doi:10.1109/ISMAR.2014.6948425.
  39. Semantic depth of field. In IEEE Symposium on Information Visualization, 2001. INFOVIS 2001. (2001), pp. 97–104. doi:10.1109/INFVIS.2001.963286.
  40. MyBrush: Brushing and Linking with Personal Agency. IEEE Trans. Visual Comput. Graphics 24, 1 (2018), 605–615. doi:10.1109/TVCG.2017.2743859.
  41. Kasahara S., Rekimoto J.: JackIn: Integrating first-person view with out-of-body vision generation for human-human augmentation. In Proceedings of the 5th Augmented Human International Conference (New York, 2014), AH ’14, ACM, pp. 1–8. doi:10.1145/2582051.2582097.
  42. Perceptual issues in augmented reality revisited. In 2010 IEEE International Symposium on Mixed and Augmented Reality (2010), pp. 3–12. doi:10.1109/ISMAR.2010.5643530.
  43. Adaptive ghosted views for Augmented Reality. In 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (Oct. 2013), pp. 1–9. doi:10.1109/ISMAR.2013.6671758.
  44. The role of latency in the validity of ar simulation. In 2010 IEEE Virtual Reality Conference (VR) (2010), pp. 11–18. doi:10.1109/VR.2010.5444820.
  45. A replication study testing the validity of ar simulation in vr for controlled experiments. In 2009 8th IEEE International Symposium on Mixed and Augmented Reality (2009), pp. 203–204. doi:10.1109/ISMAR.2009.5336464.
  46. Sensemaking Strategies with Immersive Space to Think. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR) (Mar. 2021), pp. 529–537. doi:10.1109/VR50410.2021.00077.
  47. Shared Surfaces and Spaces: Collaborative Data Visualisation in a Co-located Immersive Environment. IEEE Trans. Visual Comput. Graphics 27, 2 (2021), 1171–1181. doi:10.1109/TVCG.2020.3030450.
  48. 3D User Interfaces: Theory and Practice. Addison-Wesley Professional, 2017.
  49. Design and Evaluation of Interactive Small Multiples Data Visualisation in Immersive Spaces. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (Atlanta, 2020), IEEE, pp. 588–597. doi:10.1109/VR46266.2020.00081.
  50. The effects of visual realism on search tasks in mixed reality simulation. IEEE Trans. Visual Comput. Graphics 19, 4 (2013), 547–556. doi:10.1109/TVCG.2013.41.
  51. Hivefive: Immersion preserving attention guidance in virtual reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (2020). doi:10.1145/3313831.3376803.
  52. Design Patterns for Situated Visualization in Augmented Reality. IEEE Trans. Visual Comput. Graphics 30, 1 (2023), 1–12. doi:10.1109/TVCG.2023.3327398.
  53. Labeling Out-of-View Objects in Immersive Analytics to Support Situated Visual Searching. IEEE Trans. Visual Comput. Graphics 29, 3 (2023), 1831–1844. doi:10.1109/TVCG.2021.3133511.
  54. McIntire J. P., Liggett K. K.: The (possible) utility of stereoscopic 3d displays for information visualization: The good, the bad, and the ugly. In 2014 IEEE VIS International Workshop on 3DVis (3DVis) (2014), pp. 1–9. doi:10.1109/3DVis.2014.7160093.
  55. Ma Q., Millet B.: Design guidelines for immersive dashboards. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 65, 1 (2021), 1524–1528. doi:10.1177/1071181321651177.
  56. Immersive Analytics. Lecture Notes in Computer Science. Springer International Publishing, 2018. doi:10.1007/978-3-030-01388-2.
  57. Comparing non-visual and visual guidance methods for narrow field of view augmented reality displays. IEEE Trans. Visual Comput. Graphics 26, 12 (2020), 3389–3401. doi:10.1109/TVCG.2020.3023605.
  58. Effects of information layout, screen size, and field of view on user performance in information-rich virtual environments. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST (2005), 46–55. doi:10.1145/1101616.1101626.
  59. Visual Link Routing in Immersive Visualisations. In Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces (New York, 2019), ISS ’19, ACM, pp. 241–253. doi:10.1145/3343055.3359709.
  60. Quantifying the Impact of XR Visual Guidance on User Performance Using a Large-Scale Virtual Assembly Experiment. In 2023 IEEE Visualization and Visual Analytics (VIS) (Oct. 2023), IEEE Computer Society, pp. 211–215. doi:10.1109/VIS54172.2023.00051.
  61. One view is not enough: Review of and encouragement for multiple and alternative representations in 3d and immersive visualisation. Computers 11 (2 2022), 20. doi:10.3390/COMPUTERS11020020.
  62. Roberts J. C.: State of the art: Coordinated & multiple views in exploratory visualization. In Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007) (USA, 2007), IEEE Computer Society, pp. 61–71. doi:10.1109/CMV.2007.20.
  63. Scalability in visualization. IEEE Trans. Visual Comput. Graphics (2022), 1–15. doi:10.1109/TVCG.2022.3231230.
  64. Simulation of augmented reality systems in purely virtual environments. In Proceedings of the 2009 IEEE Virtual Reality Conference (2009), p. 287–288. doi:10.1109/VR.2009.4811058.
  65. The Reality of the Situation: A Survey of Situated Analytics. IEEE Trans. Visual Comput. Graphics (2023), 1–19. doi:10.1109/TVCG.2023.3285546.
  66. Through Their Eyes and In Their Shoes: Providing Group Awareness During Collaboration Across Virtual Reality and Desktop Platforms. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (New York, 2023), CHI ’23, ACM, pp. 1–15. doi:10.1145/3544548.3581093.
  67. Outline Pursuits: Gaze-assisted Selection of Occluded Objects in Virtual Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (New York, 2020), CHI ’20, ACM, pp. 1–13. doi:10.1145/3313831.3376438.
  68. Satkowski M., Dachselt R.: Investigating the impact of real-world environments on the perception of 2d visualizations in augmented reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (New York, 2021), CHI ’21, ACM. doi:10.1145/3411764.3445330.
  69. Schmalstieg D., Höllerer T.: Augmented Reality - Principles and Practice. Addison-Wesley Professional, 2016.
  70. Suomela R., Lehikoinen J.: Context Compass. In Digest of Papers. Fourth International Symposium on Wearable Computers (Oct. 2000), IEEE Computer Society, pp. 147–147. doi:10.1109/ISWC.2000.888481.
  71. DXR: A Toolkit for Building Immersive Data Visualizations. IEEE Trans. Visual Comput. Graphics 25, 1 (2019), 715–725. doi:10.1109/TVCG.2018.2865152.
  72. Designing Situated Dashboards: Challenges and Opportunities. In 2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (2023), pp. 97–102. doi:10.1109/ISMAR-Adjunct60411.2023.00028.
  73. Seraji M. R., Stuerzlinger W.: XVCollab: An Immersive Analytics Tool for Asymmetric Collaboration across the Virtuality Spectrum. In 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (USA, 2022), IEEE, pp. 146–154. doi:10.1109/ISMAR-Adjunct57072.2022.00035.
  74. The effect of narrow field of view and information density on visual search performance in augmented reality. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (2019), pp. 575–584. doi:10.1109/VR.2019.8798312.
  75. Tonnis M., Klinker G.: Effective control of a car driver’s attention for visual and acoustic guidance towards the direction of imminent dangers. In 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality (2006), pp. 13–22. doi:10.1109/ISMAR.2006.297789.
  76. Animation: Can it facilitate? International Journal of Human-Computer Studies 57, 4 (Oct. 2002), 247–262. doi:10.1006/ijhc.2002.1017.
  77. Adaptive information density for augmented reality displays. In 2016 IEEE Virtual Reality (VR) (USA, 2016), IEEE, pp. 83–92. doi:10.1109/VR.2016.7504691.
  78. Situated analytics. In Immersive Analytics, Marriott K., Schreiber F., Dwyer T., Klein K., Riche N. H., Itoh T., Stuerzlinger W., Thomas B. H., (Eds.). Springer International Publishing, Cham, 2018, pp. 185–220. doi:10.1007/978-3-030-01388-2_7.
  79. Vertegaal R.: Designing attentive interfaces. In Proceedings of the 2002 Symposium on Eye Tracking Research & Applications (2002), p. 23–30. doi:10.1145/507072.507077.
  80. Directing attention and influencing memory with visual saliency modulation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (New York, May 2011), CHI ’11, ACM, pp. 1471–1480. doi:10.1145/1978942.1979158.
  81. White S., Feiner S.: SiteLens: Situated visualization techniques for urban site visits. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (New York, 2009), ACM, pp. 1117–1120. doi:10.1145/1518701.1518871.
  82. Arrow, bézier curve, or halos? – comparing 3d out-of-view object visualization techniques for handheld augmented reality. In 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2022), pp. 797–806. doi:10.1109/ISMAR55827.2022.00098.
  83. Embedded Data Representations. IEEE Trans. Visual Comput. Graphics 23, 1 (2017), 461–470. doi:10.1109/TVCG.2016.2598608.
  84. Graphical perception for immersive analytics. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (2020), pp. 616–625. doi:10.1109/VR46266.2020.00084.
  85. Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences 15, 2 (2011), 77–84. doi:10.1016/j.tics.2010.12.001.
  86. Design and evaluation of visualization techniques of off-screen and occluded targets in virtual reality environments. IEEE Trans. Visual Comput. Graphics 26, 9 (2020), 2762–2774. doi:10.1109/TVCG.2019.2905580.
  87. Design Space of Visual Feedforward And Corrective Feedback in XR-Based Motion Guidance Systems, Feb. 2024. arXiv:2402.09182, doi:10.1145/3613904.3642143.
  88. Visualization techniques in augmented reality: A taxonomy, methods and patterns. IEEE Trans. Visual Comput. Graphics 27, 9 (2021), 3808–3825. doi:10.1109/TVCG.2020.2986247.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: