Papers
Topics
Authors
Recent
2000 character limit reached

Double Retrieval and Ranking for Accurate Question Answering (2201.05981v1)

Published 16 Jan 2022 in cs.CL

Abstract: Recent work has shown that an answer verification step introduced in Transformer-based answer selection models can significantly improve the state of the art in Question Answering. This step is performed by aggregating the embeddings of top $k$ answer candidates to support the verification of a target answer. Although the approach is intuitive and sound still shows two limitations: (i) the supporting candidates are ranked only according to the relevancy with the question and not with the answer, and (ii) the support provided by the other answer candidates is suboptimal as these are retrieved independently of the target answer. In this paper, we address both drawbacks by proposing (i) a double reranking model, which, for each target answer, selects the best support; and (ii) a second neural retrieval stage designed to encode question and answer pair as the query, which finds more specific verification information. The results on three well-known datasets for AS2 show consistent and significant improvement of the state of the art.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.