Papers
Topics
Authors
Recent
2000 character limit reached

Transient anomalous diffusion in heterogeneous media with stochastic resetting

Published 14 Jan 2022 in cond-mat.stat-mech and physics.data-an | (2201.05598v1)

Abstract: We investigate a diffusion process in heterogeneous media where particles stochastically reset to their initial positions at a constant rate. The heterogeneous media is modeled using a spatial-dependent diffusion coefficient with a power-law dependence on particles' positions. We use the Green function approach to obtain exact solutions for the probability distribution of particles' positions and the mean square displacement. These results are further compared and agree with numerical simulations of a Langevin equation. We also study the first-passage time problem associated with this diffusion process and obtain an exact expression for the mean first-passage time. Our findings show that this system exhibits non-Gaussian distributions, transient anomalous diffusion (sub- or superdiffusion) and stationary states that simultaneously depend on the media heterogeneity and the resetting rate. We further demonstrate that the media heterogeneity non-trivially affect the mean first-passage time, yielding an optimal resetting rate for which this quantity displays a minimum.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.