Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning to Solve NP-hard Problems: an Application to the CVRP (2201.05393v1)

Published 14 Jan 2022 in cs.AI and cs.LG

Abstract: In this paper, we evaluate the use of Reinforcement Learning (RL) to solve a classic combinatorial optimization problem: the Capacitated Vehicle Routing Problem (CVRP). We formalize this problem in the RL framework and compare two of the most promising RL approaches with traditional solving techniques on a set of benchmark instances. We measure the different approaches with the quality of the solution returned and the time required to return it. We found that despite not returning the best solution, the RL approach has many advantages over traditional solvers. First, the versatility of the framework allows the resolution of more complex combinatorial problems. Moreover, instead of trying to solve a specific instance of the problem, the RL algorithm learns the skills required to solve the problem. The trained policy can then quasi instantly provide a solution to an unseen problem without having to solve it from scratch. Finally, the use of trained models makes the RL solver by far the fastest, and therefore make this approach more suited for commercial use where the user experience is paramount. Techniques like Knowledge Transfer can also be used to improve the training efficiency of the algorithm and help solve bigger and more complex problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Leo Ardon (15 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.