Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Contrastive Learning for Recommendation (2201.03144v2)

Published 10 Jan 2022 in cs.IR and cs.AI

Abstract: In this work, we aim to consider the application of contrastive learning in the scenario of the recommendation system adequately, making it more suitable for recommendation task. We propose a learning paradigm called supervised contrastive learning(SCL) to support the graph convolutional neural network. Specifically, we will calculate the similarity between different nodes in user side and item side respectively during data preprocessing, and then when applying contrastive learning, not only will the augmented views be regarded as the positive samples, but also a certain number of similar samples will be regarded as the positive samples, which is different with SimCLR that treats other samples in a batch as negative samples. We apply SCL on the most advanced LightGCN. In addition, in order to consider the uncertainty of node interaction, we also propose a new data augment method called node replication. Empirical research and ablation study on Gowalla, Yelp2018, Amazon-Book datasets prove the effectiveness of SCL and node replication, which improve the accuracy of recommendations and robustness to interactive noise.

Citations (35)

Summary

We haven't generated a summary for this paper yet.