Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Information-Theoretic Bias Reduction via Causal View of Spurious Correlation (2201.03121v1)

Published 10 Jan 2022 in cs.LG, cs.AI, and cs.CY

Abstract: We propose an information-theoretic bias measurement technique through a causal interpretation of spurious correlation, which is effective to identify the feature-level algorithmic bias by taking advantage of conditional mutual information. Although several bias measurement methods have been proposed and widely investigated to achieve algorithmic fairness in various tasks such as face recognition, their accuracy- or logit-based metrics are susceptible to leading to trivial prediction score adjustment rather than fundamental bias reduction. Hence, we design a novel debiasing framework against the algorithmic bias, which incorporates a bias regularization loss derived by the proposed information-theoretic bias measurement approach. In addition, we present a simple yet effective unsupervised debiasing technique based on stochastic label noise, which does not require the explicit supervision of bias information. The proposed bias measurement and debiasing approaches are validated in diverse realistic scenarios through extensive experiments on multiple standard benchmarks.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.