Papers
Topics
Authors
Recent
2000 character limit reached

Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices

Published 9 Jan 2022 in math.FA | (2201.03082v2)

Abstract: We consider operators acting on a UMD Banach lattice $X$ that have the same algebraic structure as the position and momentum operators associated with the harmonic oscillator $-\frac12\Delta + \frac12|x|{2} $ acting on $L{2}(\mathbb{R}{d})$. More precisely, we consider abstract harmonic oscillators of the form $\frac12 \sum {j=1} {d}(A{j}{2}+B_{j}{2})$ for tuples of operators $A=(A_{j}){j=1} {d}$ and $B=(B{k}){k=1} {d}$, where $iA_j$ and $iB_k$ are assumed to generate $C{0}$ groups and to satisfy the canonical commutator relations. We prove functional calculus results for these abstract harmonic oscillators that match classical H\"ormander spectral multiplier estimates for the harmonic oscillator $-\frac12\Delta + \frac12|x|{2}$ on $L{p}(\mathbb{R}{d})$. This covers situations where the underlying metric measure space is not doubling and the use of function spaces that are not particularly well suited to extrapolation arguments. For instance, as an application we treat the harmonic oscillator on mixed norm Bargmann-Fock spaces. Our approach is based on a transference principle for the Schr\"odinger representation of the Heisenberg group that allows us to reduce the problem to the study of the twisted Laplacian on the Bochner spaces $L{2}(\mathbb{R}{2d};X)$. This can be seen as a generalisation of the Stone-von Neumann theorem to UMD lattices $X$ that are not Hilbert spaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.