2000 character limit reached
Rigidity of flag manifolds (2201.01648v2)
Published 5 Jan 2022 in math.DG
Abstract: Let $N\subset GL(n,R)$ be the group of upper triangular matrices with $1$s on the diagonal, equipped with the standard Carnot group structure. We show that quasiconformal homeomorphisms between open subsets of $N$, and more generally Sobolev mappings with nondegenerate Pansu differential, are rigid when $n \geq 4$; this settles the Regularity Conjecture for such groups. This result is deduced from a rigidity theorem for the manifold of complete flags in $Rn$. Similar results also hold in the complex and quaternion cases.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.