Deep Learning-based Predictive Control of Battery Management for Frequency Regulation
Abstract: This paper proposes a deep learning-based optimal battery management scheme for frequency regulation (FR) by integrating model predictive control (MPC), supervised learning (SL), reinforcement learning (RL), and high-fidelity battery models. By taking advantage of deep neural networks (DNNs), the derived DNN-approximated policy is computationally efficient in online implementation. The design procedure of the proposed scheme consists of two sequential processes: (1) the SL process, in which we first run a simulation with an MPC embedding a low-fidelity battery model to generate a training data set, and then, based on the generated data set, we optimize a DNN-approximated policy using SL algorithms; and (2) the RL process, in which we utilize RL algorithms to improve the performance of the DNN-approximated policy by balancing short-term economic incentives and long-term battery degradation. The SL process speeds up the subsequent RL process by providing a good initialization. By utilizing RL algorithms, one prominent property of the proposed scheme is that it can learn from the data generated by simulating the FR policy on the high-fidelity battery simulator to adjust the DNN-approximated policy, which is originally based on low-fidelity battery model. A case study using real-world data of FR signals and prices is performed. Simulation results show that, compared to conventional MPC schemes, the proposed deep learning-based scheme can effectively achieve higher economic benefits of FR participation while maintaining lower online computational cost.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.