Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-agent Battery Storage Management using MPC-based Reinforcement Learning (2106.03541v1)

Published 7 Jun 2021 in eess.SY and cs.SY

Abstract: In this paper, we present the use of Model Predictive Control (MPC) based on Reinforcement Learning (RL) to find the optimal policy for a multi-agent battery storage system. A time-varying prediction of the power price and production-demand uncertainty are considered. We focus on optimizing an economic objective cost while avoiding very low or very high state of charge, which can damage the battery. We consider the bounded power provided by the main grid and the constraints on the power input and state of each agent. A parametrized MPC-scheme is used as a function approximator for the deterministic policy gradient method and RL optimizes the closed-loop performance by updating the parameters. Simulation results demonstrate that the proposed method is able to tackle the constraints and deliver the optimal policy.

Citations (11)

Summary

We haven't generated a summary for this paper yet.