Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the effectiveness of Randomized Signatures as Reservoir for Learning Rough Dynamics

Published 2 Jan 2022 in cs.LG and eess.SP | (2201.00384v3)

Abstract: Many finance, physics, and engineering phenomena are modeled by continuous-time dynamical systems driven by highly irregular (stochastic) inputs. A powerful tool to perform time series analysis in this context is rooted in rough path theory and leverages the so-called Signature Transform. This algorithm enjoys strong theoretical guarantees but is hard to scale to high-dimensional data. In this paper, we study a recently derived random projection variant called Randomized Signature, obtained using the Johnson-Lindenstrauss Lemma. We provide an in-depth experimental evaluation of the effectiveness of the Randomized Signature approach, in an attempt to showcase the advantages of this reservoir to the community. Specifically, we find that this method is preferable to the truncated Signature approach and alternative deep learning techniques in terms of model complexity, training time, accuracy, robustness, and data hungriness.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.