Papers
Topics
Authors
Recent
2000 character limit reached

Operator Deep Q-Learning: Zero-Shot Reward Transferring in Reinforcement Learning (2201.00236v1)

Published 1 Jan 2022 in cs.LG, cs.RO, and stat.ML

Abstract: Reinforcement learning (RL) has drawn increasing interests in recent years due to its tremendous success in various applications. However, standard RL algorithms can only be applied for single reward function, and cannot adapt to an unseen reward function quickly. In this paper, we advocate a general operator view of reinforcement learning, which enables us to directly approximate the operator that maps from reward function to value function. The benefit of learning the operator is that we can incorporate any new reward function as input and attain its corresponding value function in a zero-shot manner. To approximate this special type of operator, we design a number of novel operator neural network architectures based on its theoretical properties. Our design of operator networks outperform the existing methods and the standard design of general purpose operator network, and we demonstrate the benefit of our operator deep Q-learning framework in several tasks including reward transferring for offline policy evaluation (OPE) and reward transferring for offline policy optimization in a range of tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.