Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Effect of Kinematics and Fluency in Adversarial Synthetic Data Generation for ASL Recognition with RF Sensors (2201.00055v1)

Published 31 Dec 2021 in eess.SP

Abstract: RF sensors have been recently proposed as a new modality for sign language processing technology. They are non-contact, effective in the dark, and acquire a direct measurement of signing kinematic via exploitation of the micro-Doppler effect. First, this work provides an in depth, comparative examination of the kinematic properties of signing as measured by RF sensors for both fluent ASL users and hearing imitation signers. Second, as ASL recognition techniques utilizing deep learning requires a large amount of training data, this work examines the effect of signing kinematics and subject fluency on adversarial learning techniques for data synthesis. Two different approaches for the synthetic training data generation are proposed: 1) adversarial domain adaptation to minimize the differences between imitation signing and fluent signing data, and 2) kinematically-constrained generative adversarial networks for accurate synthesis of RF signing signatures. The results show that the kinematic discrepancies between imitation signing and fluent signing are so significant that training on data directly synthesized from fluent RF signers offers greater performance (93% top-5 accuracy) than that produced by adaptation of imitation signing (88% top-5 accuracy) when classifying 100 ASL signs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube