Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Transformers for Hate Speech Detection in Conversational Code-Mixed Tweets (2112.09986v1)

Published 18 Dec 2021 in cs.CL, cs.AI, and cs.LG

Abstract: In the current era of the internet, where social media platforms are easily accessible for everyone, people often have to deal with threats, identity attacks, hate, and bullying due to their association with a cast, creed, gender, religion, or even acceptance or rejection of a notion. Existing works in hate speech detection primarily focus on individual comment classification as a sequence labeling task and often fail to consider the context of the conversation. The context of a conversation often plays a substantial role when determining the author's intent and sentiment behind the tweet. This paper describes the system proposed by team MIDAS-IIITD for HASOC 2021 subtask 2, one of the first shared tasks focusing on detecting hate speech from Hindi-English code-mixed conversations on Twitter. We approach this problem using neural networks, leveraging the transformer's cross-lingual embeddings and further finetuning them for low-resource hate-speech classification in transliterated Hindi text. Our best performing system, a hard voting ensemble of Indic-BERT, XLM-RoBERTa, and Multilingual BERT, achieved a macro F1 score of 0.7253, placing us first on the overall leaderboard standings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zaki Mustafa Farooqi (1 paper)
  2. Sreyan Ghosh (46 papers)
  3. Rajiv Ratn Shah (108 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.