Privacy Leakage over Dependent Attributes in One-Sided Differential Privacy (2112.09771v1)
Abstract: Providing a provable privacy guarantees while maintaining the utility of data is a challenging task in many real-world applications. Recently, a new framework called One-Sided Differential Privacy (OSDP) was introduced that extends existing differential privacy approaches. OSDP increases the utility of the data by taking advantage of the fact that not all records are sensitive. However, the previous work assumed that all records are statistically independent from each other. Motivated by occupancy data in building management systems, this paper extends the existing one-sided differential privacy framework. In this paper, we quantify the overall privacy leakage when the adversary is given dependency information between the records. In addition, we show how an optimization problem can be constructed that efficiently trades off between the utility and privacy.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.