Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Asymmetric Differential Privacy (2103.00996v2)

Published 1 Mar 2021 in cs.CR

Abstract: Differential privacy (DP) is getting attention as a privacy definition when publishing statistics of a dataset. This paper focuses on the limitation that DP inevitably causes two-sided error, which is not desirable for epidemic analysis such as how many COVID-19 infected individuals visited location A. For example, consider publishing misinformation that many infected people did not visit location A, which may lead to miss decision-making that expands the epidemic. To fix this issue, we propose a relaxation of DP, called asymmetric differential privacy (ADP). We show that ADP can provide reasonable privacy protection while achieving one-sided error. Finally, we conduct experiments to evaluate the utility of proposed mechanisms for epidemic analysis using a real-world dataset, which shows the practicality of our mechanisms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.