Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On spectral distribution of sample covariance matrices from large dimensional and large $k$-fold tensor products (2112.05995v1)

Published 11 Dec 2021 in math.PR, math-ph, math.CO, math.MP, math.ST, and stat.TH

Abstract: We study the eigenvalue distributions for sums of independent rank-one $k$-fold tensor products of large $n$-dimensional vectors. Previous results in the literature assume that $k=o(n)$ and show that the eigenvalue distributions converge to the celebrated Mar\v{c}enko-Pastur law under appropriate moment conditions on the base vectors. In this paper, motivated by quantum information theory, we study the regime where $k$ grows faster, namely $k=O(n)$. We show that the moment sequences of the eigenvalue distributions have a limit, which is different from the Mar\v{c}enko-Pastur law. As a byproduct, we show that the Mar\v{c}enko-Pastur law limit holds if and only if $k=o(n)$ for this tensor model. The approach is based on the method of moments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.