Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product (1008.3099v3)

Published 18 Aug 2010 in math.PR, math.OA, and quant-ph

Abstract: Given two positive integers $n$ and $k$ and a parameter $t\in (0,1)$, we choose at random a vector subspace $V_{n}\subset \mathbb{C}{k}\otimes\mathbb{C}{n}$ of dimension $N\sim tnk$. We show that the set of $k$-tuples of singular values of all unit vectors in $V_n$ fills asymptotically (as $n$ tends to infinity) a deterministic convex set $K_{k,t}$ that we describe using a new norm in $\Rk$. Our proof relies on free probability, random matrix theory, complex analysis and matrix analysis techniques. The main result result comes together with a law of large numbers for the singular value decomposition of the eigenvectors corresponding to large eigenvalues of a random truncation of a matrix with high eigenvalue degeneracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.