Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strategies in JPEG compression using Convolutional Neural Network (CNN) (2112.04500v1)

Published 6 Dec 2021 in eess.IV

Abstract: Interests in digital image processing are growing enormously in recent decades. As a result, different data compression techniques have been proposed which are concerned mostly with the minimization of information used for the representation of images. With the advances of deep neural networks, image compression can be achieved to a higher degree. This paper describes an overview of JPEG Compression, Discrete Fourier Transform (DFT), Convolutional Neural Network (CNN), quality metrics to measure the performance of image compression and discuss the advancement of deep learning for image compression mostly focused on JPEG, and suggests that adaptation of model improve the compression.

Citations (1)

Summary

We haven't generated a summary for this paper yet.