Papers
Topics
Authors
Recent
2000 character limit reached

RIF Regression via Sensitivity Curves (2112.01435v1)

Published 2 Dec 2021 in econ.EM

Abstract: This paper proposes an empirical method to implement the recentered influence function (RIF) regression of Firpo, Fortin and Lemieux (2009), a relevant method to study the effect of covariates on many statistics beyond the mean. In empirically relevant situations where the influence function is not available or difficult to compute, we suggest to use the \emph{sensitivity curve} (Tukey, 1977) as a feasible alternative. This may be computationally cumbersome when the sample size is large. The relevance of the proposed strategy derives from the fact that, under general conditions, the sensitivity curve converges in probability to the influence function. In order to save computational time we propose to use a cubic splines non-parametric method for a random subsample and then to interpolate to the rest of the cases where it was not computed. Monte Carlo simulations show good finite sample properties. We illustrate the proposed estimator with an application to the polarization index of Duclos, Esteban and Ray (2004).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.