Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Local convergence of alternating low-rank optimization methods with overrelaxation (2111.14758v2)

Published 29 Nov 2021 in math.NA, cs.NA, and math.OC

Abstract: The local convergence of alternating optimization methods with overrelaxation for low-rank matrix and tensor problems is established. The analysis is based on the linearization of the method which takes the form of an SOR iteration for a positive semidefinite Hessian and can be studied in the corresponding quotient geometry of equivalent low-rank representations. In the matrix case, the optimal relaxation parameter for accelerating the local convergence can be determined from the convergence rate of the standard method. This result relies on a version of Young's SOR theorem for positive semidefinite $2 \times 2$ block systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.