Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA (1711.01742v3)

Published 6 Nov 2017 in math.OC, cs.LG, and stat.ML

Abstract: This work studies low-rank approximation of a positive semidefinite matrix from partial entries via nonconvex optimization. We characterized how well local-minimum based low-rank factorization approximates a fixed positive semidefinite matrix without any assumptions on the rank-matching, the condition number or eigenspace incoherence parameter. Furthermore, under certain assumptions on rank-matching and well-boundedness of condition numbers and eigenspace incoherence parameters, a corollary of our main theorem improves the state-of-the-art sampling rate results for nonconvex matrix completion with no spurious local minima in Ge et al. [2016, 2017]. In addition, we investigated when the proposed nonconvex optimization results in accurate low-rank approximations even in presence of large condition numbers, large incoherence parameters, or rank mismatching. We also propose to apply the nonconvex optimization to memory-efficient Kernel PCA. Compared to the well-known Nystr\"{o}m methods, numerical experiments indicate that the proposed nonconvex optimization approach yields more stable results in both low-rank approximation and clustering.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.