Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scaling Law for Recommendation Models: Towards General-purpose User Representations (2111.11294v5)

Published 15 Nov 2021 in cs.IR and cs.LG

Abstract: Recent advancement of large-scale pretrained models such as BERT, GPT-3, CLIP, and Gopher, has shown astonishing achievements across various task domains. Unlike vision recognition and LLMs, studies on general-purpose user representation at scale still remain underexplored. Here we explore the possibility of general-purpose user representation learning by training a universal user encoder at large scales. We demonstrate that the scaling law is present in user representation learning areas, where the training error scales as a power-law with the amount of computation. Our Contrastive Learning User Encoder (CLUE), optimizes task-agnostic objectives, and the resulting user embeddings stretch our expectation of what is possible to do in various downstream tasks. CLUE also shows great transferability to other domains and companies, as performances on an online experiment shows significant improvements in Click-Through-Rate (CTR). Furthermore, we also investigate how the model performance is influenced by the scale factors, such as training data size, model capacity, sequence length, and batch size. Finally, we discuss the broader impacts of CLUE in general.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.