Data-driven synthesis of Robust Invariant Sets and Controllers (2111.09860v1)
Abstract: This paper presents a method to identify an uncertain linear time-invariant (LTI) prediction model for tube-based Robust Model Predictive Control (RMPC). The uncertain model is determined from a given state-input dataset by formulating and solving a Semidefinite Programming problem (SDP), that also determines a static linear feedback gain and corresponding invariant sets satisfying the inclusions required to guarantee recursive feasibility and stability of the RMPC scheme, while minimizing an identification criterion. As demonstrated through an example, the proposed concurrent approach provides less conservative invariant sets than a sequential approach.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.