Papers
Topics
Authors
Recent
2000 character limit reached

Computationally Efficient Robust Model Predictive Control for Uncertain System Using Causal State-Feedback Parameterization (2208.08431v1)

Published 17 Aug 2022 in eess.SY and cs.SY

Abstract: This paper investigates the problem of robust model predictive control (RMPC) of linear-time-invariant (LTI) discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques. The proposed algorithm computes the state-feedback gain and perturbation online by solving a linear matrix inequality (LMI) optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. Additionally, an offline strategy that provides initial feasibility on the RMPC problem is presented. The effectiveness of the proposed scheme is demonstrated through numerical examples from the literature.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.