Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning on Human Decision Models for Uniquely Collaborative AI Teammates (2111.09800v1)

Published 18 Nov 2021 in cs.AI and cs.LG

Abstract: In 2021 the Johns Hopkins University Applied Physics Laboratory held an internal challenge to develop artificially intelligent (AI) agents that could excel at the collaborative card game Hanabi. Agents were evaluated on their ability to play with human players whom the agents had never previously encountered. This study details the development of the agent that won the challenge by achieving a human-play average score of 16.5, outperforming the current state-of-the-art for human-bot Hanabi scores. The winning agent's development consisted of observing and accurately modeling the author's decision making in Hanabi, then training with a behavioral clone of the author. Notably, the agent discovered a human-complementary play style by first mimicking human decision making, then exploring variations to the human-like strategy that led to higher simulated human-bot scores. This work examines in detail the design and implementation of this human compatible Hanabi teammate, as well as the existence and implications of human-complementary strategies and how they may be explored for more successful applications of AI in human machine teams.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Nicholas Kantack (2 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.