Papers
Topics
Authors
Recent
2000 character limit reached

Meta-Learning for Multi-Label Few-Shot Classification (2110.13494v1)

Published 26 Oct 2021 in cs.CV

Abstract: Even with the luxury of having abundant data, multi-label classification is widely known to be a challenging task to address. This work targets the problem of multi-label meta-learning, where a model learns to predict multiple labels within a query (e.g., an image) by just observing a few supporting examples. In doing so, we first propose a benchmark for Few-Shot Learning (FSL) with multiple labels per sample. Next, we discuss and extend several solutions specifically designed to address the conventional and single-label FSL, to work in the multi-label regime. Lastly, we introduce a neural module to estimate the label count of a given sample by exploiting the relational inference. We will show empirically the benefit of the label count module, the label propagation algorithm, and the extensions of conventional FSL methods on three challenging datasets, namely MS-COCO, iMaterialist, and Open MIC. Overall, our thorough experiments suggest that the proposed label-propagation algorithm in conjunction with the neural label count module (NLC) shall be considered as the method of choice.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.