Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transductive Few-shot Learning with Prototype-based Label Propagation by Iterative Graph Refinement (2304.11598v1)

Published 23 Apr 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Few-shot learning (FSL) is popular due to its ability to adapt to novel classes. Compared with inductive few-shot learning, transductive models typically perform better as they leverage all samples of the query set. The two existing classes of methods, prototype-based and graph-based, have the disadvantages of inaccurate prototype estimation and sub-optimal graph construction with kernel functions, respectively. In this paper, we propose a novel prototype-based label propagation to solve these issues. Specifically, our graph construction is based on the relation between prototypes and samples rather than between samples. As prototypes are being updated, the graph changes. We also estimate the label of each prototype instead of considering a prototype be the class centre. On mini-ImageNet, tiered-ImageNet, CIFAR-FS and CUB datasets, we show the proposed method outperforms other state-of-the-art methods in transductive FSL and semi-supervised FSL when some unlabeled data accompanies the novel few-shot task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hao Zhu (212 papers)
  2. Piotr Koniusz (84 papers)
Citations (27)