Understanding the Impact of UGC Specificities on Translation Quality (2110.12551v1)
Abstract: This work takes a critical look at the evaluation of user-generated content automatic translation, the well-known specificities of which raise many challenges for MT. Our analyses show that measuring the average-case performance using a standard metric on a UGC test set falls far short of giving a reliable image of the UGC translation quality. That is why we introduce a new data set for the evaluation of UGC translation in which UGC specificities have been manually annotated using a fine-grained typology. Using this data set, we conduct several experiments to measure the impact of different kinds of UGC specificities on translation quality, more precisely than previously possible.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.