Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BLEU, METEOR, BERTScore: Evaluation of Metrics Performance in Assessing Critical Translation Errors in Sentiment-oriented Text (2109.14250v1)

Published 29 Sep 2021 in cs.CL

Abstract: Social media companies as well as authorities make extensive use of AI tools to monitor postings of hate speech, celebrations of violence or profanity. Since AI software requires massive volumes of data to train computers, Machine Translation (MT) of the online content is commonly used to process posts written in several languages and hence augment the data needed for training. However, MT mistakes are a regular occurrence when translating sentiment-oriented user-generated content (UGC), especially when a low-resource language is involved. The adequacy of the whole process relies on the assumption that the evaluation metrics used give a reliable indication of the quality of the translation. In this paper, we assess the ability of automatic quality metrics to detect critical machine translation errors which can cause serious misunderstanding of the affect message. We compare the performance of three canonical metrics on meaningless translations where the semantic content is seriously impaired as compared to meaningful translations with a critical error which exclusively distorts the sentiment of the source text. We conclude that there is a need for fine-tuning of automatic metrics to make them more robust in detecting sentiment critical errors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hadeel Saadany (14 papers)
  2. Constantin Orasan (33 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.