Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Self-supervised denoising for massive noisy images (2110.11911v2)

Published 18 Oct 2021 in cs.CV, eess.IV, and physics.comp-ph

Abstract: We propose an effective deep learning model for signal reconstruction, which requires no signal prior, no noise model calibration, and no clean samples. This model only assumes that the noise is independent of the measurement and that the true signals share the same structured information. We demonstrate its performance on a variety of real-world applications, from sub-\r{A}ngstr\"{o}m resolution atomic images to sub-arcsecond resolution astronomy images.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.