Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clean self-supervised MRI reconstruction from noisy, sub-sampled training data with Robust SSDU (2210.01696v7)

Published 4 Oct 2022 in eess.IV

Abstract: Most existing methods for Magnetic Resonance Imaging (MRI) reconstruction with deep learning use fully supervised training, which assumes that a high signal-to-noise ratio (SNR), fully sampled dataset is available for training. In many circumstances, however, such a dataset is highly impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods for MR reconstruction have been proposed, which use sub-sampled data only. However, the majority of such methods, such as Self-Supervised Learning via Data Undersampling (SSDU), are susceptible to reconstruction errors arising from noise in the measured data. In response, we propose Robust SSDU, which provably recovers clean images from noisy, sub-sampled training data by simultaneously estimating missing k-space samples and denoising the available samples. Robust SSDU trains the reconstruction network to map from a further noisy and sub-sampled version of the data to the original, singly noisy and sub-sampled data, and applies an additive Noisier2Noise correction term at inference. We also present a related method, Noiser2Full, that recovers clean images when noisy, fully sampled data is available for training. Both proposed methods are applicable to any network architecture, straight-forward to implement and have similar computational cost to standard training. We evaluate our methods on the multi-coil fastMRI brain dataset with a novel denoising-specific architecture and find that it performs competitively with a benchmark trained on clean, fully sampled data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. A. Bustin, N. Fuin, R. M. Botnar, and C. Prieto, “From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction,” Frontiers in cardiovascular medicine, vol. 7, p. 17, 2020.
  2. K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: sensitivity encoding for fast MRI.,” Magnetic resonance in medicine, vol. 42, pp. 952–62, nov 1999.
  3. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine, vol. 58, pp. 1182–1195, dec 2007.
  4. J. C. Ye, “Compressed sensing MRI: a review from signal processing perspective,” BMC Biomedical Engineering, vol. 1, p. 8, dec 2019.
  5. S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517, 2016.
  6. K. Kwon, D. Kim, and H. Park, “A parallel MR imaging method using multilayer perceptron,” Medical physics, vol. 44, no. 12, pp. 6209–6224, 2017.
  7. K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll, “Learning a variational network for reconstruction of accelerated MRI data,” Magnetic resonance in medicine, vol. 79, no. 6, pp. 3055–3071, 2018.
  8. M. Uecker, S. Zhang, D. Voit, A. Karaus, K.-D. Merboldt, and J. Frahm, “Real-time MRI at a resolution of 20 ms,” NMR in Biomedicine, vol. 23, no. 8, pp. 986–994, 2010.
  9. H. Haji-Valizadeh, A. A. Rahsepar, J. D. Collins, E. Bassett, T. Isakova, T. Block, G. Adluru, E. V. DiBella, D. C. Lee, J. C. Carr, et al., “Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5 T and 3T,” Magnetic resonance in medicine, vol. 79, no. 5, pp. 2745–2751, 2018.
  10. Y. Lim, Y. Zhu, S. G. Lingala, D. Byrd, S. Narayanan, and K. S. Nayak, “3D dynamic MRI of the vocal tract during natural speech,” Magnetic resonance in medicine, vol. 81, no. 3, pp. 1511–1520, 2019.
  11. J. I. Tamir, X. Y. Stella, and M. Lustig, “Unsupervised deep basis pursuit: Learning reconstruction without ground-truth data,” in ISMRM annual meeting, 2019.
  12. P. Huang, C. Zhang, H. Li, S. K. Gaire, R. Liu, X. Zhang, X. Li, and L. Ying, “Deep MRI reconstruction without ground truth for training,” in ISMRM annual meeting, 2019.
  13. B. Yaman, S. A. H. Hosseini, S. Moeller, J. Ellermann, K. Uğurbil, and M. Akçakaya, “Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data,” Magnetic resonance in medicine, vol. 84, no. 6, pp. 3172–3191, 2020.
  14. H. K. Aggarwal, A. Pramanik, and M. Jacob, “ENSURE: Ensemble Stein’s unbiased risk estimator for unsupervised learning,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1160–1164, 2021.
  15. J. Obungoloch, J. R. Harper, S. Consevage, I. M. Savukov, T. Neuberger, S. Tadigadapa, and S. J. Schiff, “Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 31, pp. 665–676, 2018.
  16. N. Koonjoo, B. Zhu, G. C. Bagnall, D. Bhutto, and M. Rosen, “Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction,” Scientific reports, vol. 11, no. 1, p. 8248, 2021.
  17. J. Schlemper, S. S. M. Salehi, C. Lazarus, H. Dyvorne, R. O’Halloran, N. de Zwart, L. Sacolick, J. M. Stein, D. Rueckert, M. Sofka, et al., “Deep learning MRI reconstruction in application to point-of-care MRI,” in Proc. Intl. Soc. Mag. Reson. Med, vol. 28, p. 0991, 2020.
  18. C. Millard and M. Chiew, “A Theoretical Framework for Self-Supervised MR Image Reconstruction Using Sub-Sampling via Variable Density Noisier2Noise,” IEEE Transactions on Computational Imaging, vol. 9, pp. 707–720, 2023.
  19. N. Moran, D. Schmidt, Y. Zhong, and P. Coady, “Noisier2Noise: Learning to denoise from unpaired noisy data,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12064–12072, 2020.
  20. A. D. Desai, B. M. Ozturkler, C. M. Sandino, R. Boutin, M. Willis, S. Vasanawala, B. A. Hargreaves, C. Ré, J. M. Pauly, and A. S. Chaudhari, “Noise2Recon: Enabling SNR-robust MRI reconstruction with semi-supervised and self-supervised learning,” Magnetic Resonance in Medicine, 2023.
  21. M. S. Hansen and P. Kellman, “Image reconstruction: an overview for clinicians,” Journal of Magnetic Resonance Imaging, vol. 41, no. 3, pp. 573–585, 2015.
  22. J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila, “Noise2Noise: Learning image restoration without clean data,” arXiv preprint arXiv:1803.04189, 2018.
  23. A. Krull, T.-O. Buchholz, and F. Jug, “Noise2void-learning denoising from single noisy images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2129–2137, 2019.
  24. J. Batson and L. Royer, “Noise2self: Blind denoising by self-supervision,” in International Conference on Machine Learning, pp. 524–533, PMLR, 2019.
  25. T. Huang, S. Li, X. Jia, H. Lu, and J. Liu, “Neighbor2neighbor: Self-supervised denoising from single noisy images,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14781–14790, 2021.
  26. G. Zeng, Y. Guo, J. Zhan, Z. Wang, Z. Lai, X. Du, X. Qu, and D. Guo, “A review on deep learning MRI reconstruction without fully sampled k-space,” BMC Medical Imaging, vol. 21, no. 1, pp. 1–11, 2021.
  27. F. Wang, H. Qi, A. De Goyeneche, R. Heckel, M. Lustig, and E. Shimron, “K-band: Self-supervised MRI Reconstruction via Stochastic Gradient Descent over K-space Subsets,” arXiv preprint arXiv:2308.02958, 2023.
  28. S. Wiedemann and R. Heckel, “A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography,” arXiv preprint arXiv:2311.05539, 2023.
  29. J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A. Defazio, R. Stern, P. Johnson, M. Bruno, et al., “fastMRI: An open dataset and benchmarks for accelerated MRI,” arXiv preprint arXiv:1811.08839, 2018.
  30. M. Lyu, L. Mei, S. Huang, S. Liu, Y. Li, K. Yang, Y. Liu, Y. Dong, L. Dong, and E. X. Wu, “M4Raw: A multi-contrast, multi-repetition, multi-channel MRI k-space dataset for low-field MRI research,” Scientific Data, vol. 10, no. 1, p. 264, 2023.
  31. A. A. Hendriksen, D. M. Pelt, and K. J. Batenburg, “Noise2Inverse: Self-supervised deep convolutional denoising for tomography,” IEEE Transactions on Computational Imaging, vol. 6, pp. 1320–1335, 2020.
  32. A. Sriram, J. Zbontar, T. Murrell, A. Defazio, C. L. Zitnick, N. Yakubova, F. Knoll, and P. Johnson, “End-to-end variational networks for accelerated MRI reconstruction,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 64–73, Springer, 2020.
  33. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241, Springer, 2015.
  34. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  35. B. Yaman, S. A. H. Hosseini, S. Moeller, J. Ellermann, K. Uğurbil, and M. Akçakaya, “Ground-truth free multi-mask self-supervised physics-guided deep learning in highly accelerated MRI,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1850–1854, 2021.
  36. R. Zhao, B. Yaman, Y. Zhang, R. Stewart, A. Dixon, F. Knoll, Z. Huang, Y. W. Lui, M. S. Hansen, and M. P. Lungren, “fastMRI+, Clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data,” Scientific Data, vol. 9, no. 1, p. 152, 2022.
  37. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  38. M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S. Vasanawala, and M. Lustig, “ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA,” Magnetic Resonance in Medicine, vol. 71, pp. 990–1001, mar 2014.
  39. M. Uecker, J. I. Tamir, F. Ong, and M. Lustig, “The BART Toolbox for Computational Magnetic Resonance Imaging,” in ISMRM, 2016.
  40. D. Chen, J. Tachella, and M. E. Davies, “Robust equivariant imaging: a fully unsupervised framework for learning to image from noisy and partial measurements,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5647–5656, 2022.
  41. D. Chen, J. Tachella, and M. E. Davies, “Equivariant imaging: Learning beyond the range space,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4379–4388, 2021.
  42. C. M. Stein, “Estimation of the Mean of a Multivariate Normal Distribution,” The Annals of Statistics, vol. 9, pp. 1135–1151, nov 1981.
  43. P. Virtue and M. Lustig, “The Empirical Effect of Gaussian Noise in Undersampled MRI Reconstruction,” Tomography, vol. 3, pp. 211–221, dec 2017.
  44. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering.,” IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol. 16, pp. 2080–95, aug 2007.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Charles Millard (5 papers)
  2. Mark Chiew (9 papers)
Citations (2)