Papers
Topics
Authors
Recent
2000 character limit reached

Multilingual unsupervised sequence segmentation transfers to extremely low-resource languages (2110.08415v2)

Published 16 Oct 2021 in cs.CL

Abstract: We show that unsupervised sequence-segmentation performance can be transferred to extremely low-resource languages by pre-training a Masked Segmental LLM (Downey et al., 2021) multilingually. Further, we show that this transfer can be achieved by training over a collection of low-resource languages that are typologically similar (but phylogenetically unrelated) to the target language. In our experiments, we transfer from a collection of 10 Indigenous American languages (AmericasNLP, Mager et al., 2021) to K'iche', a Mayan language. We compare our multilingual model to a monolingual (from-scratch) baseline, as well as a model pre-trained on Quechua only. We show that the multilingual pre-trained approach yields consistent segmentation quality across target dataset sizes, exceeding the monolingual baseline in 6/10 experimental settings. Our model yields especially strong results at small target sizes, including a zero-shot performance of 20.6 F1. These results have promising implications for low-resource NLP pipelines involving human-like linguistic units, such as the sparse transcription framework proposed by Bird (2020).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.